Mechanical properties of soft biological tissues play a critical role in physiology and disease, affecting cell behavior and fate decisions and contributing to tissue development, maintenance, and repair. Limitations of existing tools prevent a comprehensive characterization of soft tissue biomechanics, hindering our understanding of these fundamental processes. Here, we develop an instrument for high-fidelity uniaxial tensile testing of soft biological tissues in controlled environmental conditions, which is based on the closed-loop interaction between an electromagnetic actuator and an optical strain sensor. We first validate the instrument using synthetic elastomers characterized via conventional methods; then, we leverage the proposed device to investigate the mechanical properties of murine esophageal tissue and, individually, of each of its constitutive layers, namely, the epithelial, connective, and muscle tissues. The enhanced reliability of this instrument makes it an ideal platform for future wide-ranging studies of the mechanics of soft biological tissues.
A magnetically actuated, optically sensed tensile testing method for mechanical characterization of soft biological tissues.
阅读:4
作者:Rosalia Luca, Hallou Adrien, Cochrane Laurence, Savin Thierry
| 期刊: | Science Advances | 影响因子: | 12.500 |
| 时间: | 2023 | 起止号: | 2023 Jan 13; 9(2):eade2522 |
| doi: | 10.1126/sciadv.ade2522 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
