With the wide application of mobile robots, mobile robot path planning (MRPP) has attracted the attention of scholars, and many metaheuristic algorithms have been used to solve MRPP. Swarm-based algorithms are suitable for solving MRPP due to their population-based computational approach. Hence, this paper utilizes the Whale Optimization Algorithm (WOA) to address the problem, aiming to improve the solution accuracy. Whale optimization algorithm (WOA) is an algorithm that imitates whale foraging behavior, and the firefly algorithm (FA) is an algorithm that imitates firefly behavior. This paper proposes a hybrid firefly-whale optimization algorithm (FWOA) based on multi-population and opposite-based learning using the above algorithms. This algorithm can quickly find the optimal path in the complex mobile robot working environment and can balance exploitation and exploration. In order to verify the FWOA's performance, 23 benchmark functions have been used to test the FWOA, and they are used to optimize the MRPP. The FWOA is compared with ten other classical metaheuristic algorithms. The results clearly highlight the remarkable performance of the Whale Optimization Algorithm (WOA) in terms of convergence speed and exploration capability, surpassing other algorithms. Consequently, when compared to the most advanced metaheuristic algorithm, FWOA proves to be a strong competitor.
Hybrid Whale Optimization with a Firefly Algorithm for Function Optimization and Mobile Robot Path Planning.
阅读:4
作者:Tian Tao, Liang Zhiwei, Wei Yuanfei, Luo Qifang, Zhou Yongquan
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Jan 8; 9(1):0 |
| doi: | 10.3390/biomimetics9010039 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
