Insulating glass units (IGUs) are construction elements that react to climatic loads in a specific way. Under the influence of changes in atmospheric pressure and temperature, as well as the effect of wind, the gas closed in the tight gap between the glass panes changes its pressure, which affects the resulting static quantities of the loaded IGUs. The calculation models described in the literature mostly concern rectangular units, however, other shapes are being implemented more and more often in modern architecture. The aim of the article was to propose analytical and numerical models of circular and elliptical IGUs and to compare their results in terms of deflections and stresses with static values for square and rectangular units. Calculation examples were presented for various dimensions of IGUs loaded with changes in atmospheric pressure and an external wind effect. For elliptical IGUs, only the numerical calculations were presented, as it is not possible to formulate an applicable deflection function practically. The results were summarized in the form of tables and graphs, which illustrate the percentage differences between the deflection and stress values for the rectilinear and curvilinear shapes of IGUs for various dimensions and types of loads. It was found that in a single circular glass pane the maximum deflection is 4.2% greater, and the maximum stress is 13% greater than in a square unit of the same dimension. Meanwhile, in a circular, symmetrically loaded double-glazed IGU, the deflection in the circular IGU is smaller by 8-9% than in the square unit and the stress is practically identical.
Deflections and Stresses in Rectangular, Circular and Elliptical Insulating Glass Units.
阅读:4
作者:Respondek Zbigniew, KozÅowski Marcin, WiÅniowski Maciej
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 Mar 25; 15(7):2427 |
| doi: | 10.3390/ma15072427 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
