In this work, a microfluidic paper-based analytical device (µPAD) for simultaneous detection of Fe, Zn, and Mn ions using immobilized chromogenic reagents Ferene S, xylenol orange, and 1-(2-pyridylazo)-2-naphthol, respectively, is presented. As the effective recognition of analytes via respective chromogens takes place under extremely different pH conditions, experiments reported in this publication are focused on optimization of the µPAD architecture allowing for the elimination of potential cross effects. The paper-based microfluidic device was fabricated using low-cost and well-reproducible wax-printing technology. For optical detection of color changes, an ordinary office scanner and self-made RGB-data processing program were applied. Optimized and stable over time, µPADs allow fast, selective, and reproducible multianalyte determinations at submillimolar levels of respective heavy metal ions, which was confirmed by results of the analysis of solutions mimicking real samples of wastewater. The presented concept of simultaneous determination of different analytes that required extremely different conditions for detection can be useful for the development of other multianalyte microfluidic paper-based devices in the µPAD format.
A Trianalyte µPAD for Simultaneous Determination of Iron, Zinc, and Manganese Ions.
阅读:3
作者:Rozbicka Barbara, Koncki Robert, Fiedoruk-Pogrebniak Marta
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2024 | 起止号: | 2024 Oct 11; 29(20):4805 |
| doi: | 10.3390/molecules29204805 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
