Firefly algorithm-based LSTM model for Guzheng tunes switching with big data analysis.

阅读:4
作者:Han Mingjin, Soradi-Zeid Samaneh, Anwlnkom Tomley, Yang Yuanyuan
Guzheng tune progression involves intricately harmonizing melodic motif transitions. Effectively navigating this vast creative possibility space to expose musically consistent elaborations presents challenges. We develop a specialized large long short-term memory (LSTM) model for generating musically consistent Guzheng tune transitions. First, we propose novel firefly algorithm (FA) enhancements, e.g., adaptive diversity preservation and adaptive swim parameters, to boost exploration effectiveness for navigating the vast creative combinatorics when generating Guzheng tune transitions. Then, we develop a specialized stacked LSTM architecture incorporating residual connections and conditioned embedding vectors that can leverage long-range temporal dependencies in Guzheng music patterns, including unsupervised learning of concise Guzheng-specific melody embedding vectors via a variational autoencoder, encapsulating unique harmonic signatures from performance descriptors to provide style guidance. Finally, we use LSTM networks to develop adversarial generative large models that enable realistic synthesis and evaluation of Guzheng tunes switching. We gather an extensive 10+ hour corpus of solo Guzheng recordings spanning 230 musical pieces, 130 distinguished performing artists, and 600+ audio tracks. Simultaneously, we conduct thorough Guzheng data analysis. Comparative assessments against strong baselines over systematic musical metrics and professional listeners validate significant generation fidelity improvements. Our model achieves a 63 % reduction in reconstruction error compared to the standard FA optimization after 1000 iterations. It also outperforms baselines in capturing characteristic motifs, maintaining modality coherence with under 2 % dissonant pitch errors, and retaining desired rhythmic cadences. User studies further confirm the superior naturalness, novelty, and stylistic faithfulness of the generated tune transitions, with ratings close to real data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。