Expression of nitric oxide synthase and transforming growth factor-beta in crush-injured tendon and synovium.

阅读:5
作者:Darmani Horma, Crossan James, McLellan Sarah D, Meek Dominic, Adam Curtis
This study examined the expression of inducible nitric oxide synthase (iNOS) and transforming growth factor-beta (TGF-beta) in macrophage infiltrates within crush-injured digital flexor tendon and synovium of control rats and rats treated with N(G)-nitro-1-arginine methyl ester (L-NAME) (5 mg/kg). Release of TGF-beta from organ cultures of tendon, muscle, and synovium, and the effects of L-NAME treatment (in vitro and in vivo), on adhesion of peritoneal macrophages to epitenon monolayers were also investigated. The results showed that during normal tendon healing the levels of TGF-beta are high at first and gradually decrease after 3 weeks of injury to slightly above control uninjured levels. However, when L-NAME was administered at the time of injury, the macrophage infiltrates were expressing high levels of TGF-beta even at 5 weeks after the injury, with no evidence of reduction. In the standard injury, iNOS activity was greatest at the acute phase of the inflammatory response and then gradually returned to normal. Treatment with L-NAME, however, resulted in inhibition of iNOS activity at 3 days and a reduction in the activity at the later time points examined after injury. We also found greatly increased levels of adhesion of peritoneal macrophages from L-NAME-treated rats to epitenon monolayers in vitro, which reflect a chronic imbalance in expression of TGF-beta, which is overexpressed, and nitric oxide, which is underexpressed. The results of the current study show that formation of nitric oxide is an important event in the course of tendon healing since its inhibition results in chronic inflammation and fibrosis due to an imbalance in TGF-beta expression in vivo.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。