Despite the discovery of copy-number variation (CNV) across the genome nearly 10 years ago, current SNP-based analysis methodologies continue to collapse the homozygous (i.e., A/A), hemizygous (i.e., A/0), and duplicative (i.e., A/A/A) genotype states, treating the genotype variable as irreducible or unaltered by other colocalizing forms of genetic (e.g., structural) variation. Our understanding of common, genome-wide CNVs suggests that the canonical genotype construct might belie the enormous complexity of the genome. Here we present multiple analyses of several phenotypes and provide methods supporting a conceptual shift that embraces the structural dimension of genotype. We comprehensively investigate the impact of the structural dimension of genotype on (1) GWAS methods, (2) interpretation of rare LOF variants, (3) characterization of genomic architecture, and (4) implications for mapping loci involved in complex disease. Taken together, these results argue for the inclusion of a structural dimension and suggest that some portion of the "missing" heritability might be recovered through integration of the structural dimension of SNP effects on complex traits.
Structural architecture of SNP effects on complex traits.
阅读:8
作者:Gamazon Eric R, Cox Nancy J, Davis Lea K
| 期刊: | American Journal of Human Genetics | 影响因子: | 8.100 |
| 时间: | 2014 | 起止号: | 2014 Nov 6; 95(5):477-89 |
| doi: | 10.1016/j.ajhg.2014.09.009 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
