Chronic hyperglycemia results in morphological and functional alterations of the kidney and microvascular damage, leading to diabetic nephropathy (DN). Since DN progresses to irreversible renal damage, it is important to elucidate a pharmacological strategy aimed for treating DN in the early stage. Here, we used the type 2 diabetic rat model to induce DN and show a nephroprotective effect following the stimulation of PPAR-α, which stabilized renal tight junction components claudin-2, claudin-5, and claudin-16. At 14 weeks old, streptozotocin-induced DN, evidenced by elevated creatinine clearance, proteinuria, and electrolyte excretion, was followed by an elevation in oxidative stress and increasing MMP activities affecting the integrity of claudin-2 and claudin-5. Treatment with a PPAR-α agonists decreased glucose levels in diabetic rats. In addition, we found that the expressions of CLDN-5 in glomeruli, CLDN-2 in proximal tubules, and CLDN-16 in the thick ascending limb of the loop of Henle were increased after treatment. As a result, renal function improved, while the oxidative stress and enzymatic activity of MMP-2 and MMP-9 decreased. In conclusion, PPAR-α stimulation prevented the decrease in claudins through a mechanism involving a correction of hyperglycemia, decreasing it in kidney oxidative stress and MMP-2 and MMP-9 activities, showing a promising nephroprotective action in the early stage of DN.
Peroxisome Proliferator-Activated Receptor Alpha Stimulation Preserves Renal Tight Junction Components in a Rat Model of Early-Stage Diabetic Nephropathy.
阅读:3
作者:Rosas-MartÃnez Lorena, RodrÃguez-Muñoz Rafael, Namorado-Tonix MarÃa Del Carmen, Missirlis Fanis, Del Valle-Mondragón Leonardo, Sánchez-Mendoza Alicia, Reyes-Sánchez José L, Cervantes-Pérez Luz Graciela
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2024 | 起止号: | 2024 Dec 7; 25(23):13152 |
| doi: | 10.3390/ijms252313152 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
