Background
Osteoarthritis (OA) is a chronic musculoskeletal degeneration disease which brings great pain to patients and a tremendous burden on the world's medical resources. Previous reports have indicated that circular RNAs (circRNAs) are involved in the pathogenesis of OA. The
Conclusion
Circ_0037658 knockdown relieved IL-1β-triggered chondrocyte injury via regulating the miR-665/ADAMTS5 axis, promising an underlying therapeutic strategy for OA.
Methods
The content of interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α) was measured using enzyme-linked immunosorbent assay (ELISA). Cell proliferation ability and apoptosis were detected using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EDU), and flow cytometry assays. Western blot assay was used to measure the protein levels of Bcl-2-related X protein (Bax), cleaved-caspase-3, MMP13, Aggrecan, and ADAMTS5. The expression of circ_0037658, microRNA-665 (miR-665), and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 5 was detected using real-time quantitative polymerase chain reaction (RT-qPCR). Dual-luciferase reporter assay and RNA Immunoprecipitation (RIP) assay were manipulated to analyze the relationships of circ_0037658, miR-665, and ADAMTS5.
Results
Human chondrocytes (CHON-001 cells) were treated with interleukin-1β (IL-1β) to establish an OA cell model. Circ_0037658 and ADAMTS5 levels were increased, and miR-665 was decreased in OA cartilage samples and IL-1β-treated chondrocyte cells. Moreover, circ_0037658 silencing promoted proliferation and impaired inflammation, apoptosis, and ECM degradation in IL-1β-treated CHON-001 cells. Mechanically, circ_0037658 acted as a sponge for miR-665 to regulate ADAMTS5 expression.
