PtdIns4P-mediated electrostatic forces influence S-acylation of peripheral proteins at the Golgi complex.

阅读:3
作者:Chumpen Ramirez Sabrina, Astrada Micaela R, Daniotti Jose L
Protein S-acylation is a reversible post-translational modification involving the addition of fatty acids to cysteines and is catalyzed by transmembrane protein acyltransferases (PATs) mainly expressed at the Golgi complex. In case of soluble proteins, S-acylation confers stable membrane attachment. Myristoylation or farnesylation of many soluble proteins constitutes the initial transient membrane adsorption step prior to S-acylation. However, some S-acylated soluble proteins, such as the neuronal growth-associated protein Growth-associated protein-43 (GAP-43), lack the hydrophobic modifications required for this initial membrane interaction. The signals for GAP-43 S-acylation are confined to the first 13 amino acids, including the S-acylatable cysteines 3 and 4 embedded in a hydrophobic region, followed by a cluster of basic amino acids. We found that mutation of critical basic amino acids drastically reduced membrane interaction and hence S-acylation of GAP-43. Interestingly, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) at the Golgi complex reduced GAP-43 membrane binding, highlighting a new, pivotal role for this anionic lipid and supporting the idea that basic amino acid residues are involved in the electrostatic interactions between GAP-43 and membranes of the Golgi complex where they are S-acylated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。