Exact gradient methods with memory.

阅读:11
作者:Florea, Mihai, I
The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of O(1/k) , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of O(1/k2) . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。