Exact gradient methods with memory.

阅读:4
作者:Florea, Mihai, I
The Inexact Gradient Method with Memory (IGMM) is able to considerably outperform the Gradient Method by employing a piece-wise linear lower model on the smooth part of the objective. However, the auxiliary problem can only be solved within a fixed tolerance at every iteration. The need to contain the inexactness narrows the range of problems to which IGMM can be applied and degrades the worst-case convergence rate. In this work, we show how a simple modification of IGMM removes the tolerance parameter from the analysis. The resulting Exact Gradient Method with Memory (EGMM) is as broadly applicable as the Bregman Distance Gradient Method/NoLips and has the same worst-case rate of O(1/k) , the best for its class. Under necessarily stricter assumptions, we can accelerate EGMM without error accumulation yielding an Accelerated Gradient Method with Memory (AGMM) possessing a worst-case rate of O(1/k2) . In our preliminary computational experiments EGMM displays excellent performance, sometimes surpassing accelerated methods. When the model discards old information, AGMM also consistently exceeds the Fast Gradient Method.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。