Pressure Dependence of Rate Coefficients of Unimolecular and Chemical Activation Reactions Connected to the Potential Energy Wells of Si(2)H(2)Cl(4), Si(2)Cl(6), and Si(2)Cl(4) via Rice-Ramsperger-Kassel-Marcus Calculations.

阅读:3
作者:Noda Kaito, Jagawa Yoshihiro, Fuwa Akio, Kunioshi Nílson
Rate coefficients for elementary reactions connected to the potential energy wells of Si(2)H(2)Cl(4), Si(2)Cl(6), and Si(2)Cl(4), which are important Si(2) species in chemical vapor deposition (CVD) processes that use chlorosilanes as silicon source gases, were determined through the Rice-Ramsperger-Kassel-Marcus theory under various conditions of temperature and pressure. The optimized structures and vibrational frequencies of the reactants, products, and transition state were obtained using (U)B3LYP/6-31+G(d,p), and the single-point energies of the optimized structures were recalculated using the coupled cluster method with single and double excitations plus triple perturbation (U)CCSD(T) with complete basis set extrapolation. Many of the unimolecular decomposition channels and chemical activation reactions investigated in this work were found to be in the fall-off regime under subatmospheric to moderately high-pressure conditions so that it is expected that accurate modeling of the gas phase in the chlorosilane CVD reactor requires careful determination of the rate coefficients as functions of temperature and pressure for the conditions of interest, instead of using high-pressure limit rate coefficients. The rate coefficients determined here were expressed through Chebyshev coefficients and also modified Arrhenius parameters to be used in simulations of systems under a wide range of temperature and pressure conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。