3D-Printed Alginate-Based Hydrogels with Appropriate Rheological Properties and Efficient Development of Cell Spheroids.

阅读:5
作者:Mazzoli Alida, Greco Stefania, Luzi Francesca, Evangelisti Maria Caterina, González Abel Duménigo, Corinaldesi Valeria, Caragiuli Manila, Rallini Marco, Puglia Debora, Cinti Saverio, Moretti Paolo, Torre Luigi, Ciarmela Pasquapina
In the last years, considerable innovation has been made regarding bioprinting, particularly in the development of cell-loaded hydrogels. The specific properties of the bioinks are crucial for printing an adequate cell-laden hydrogel structure. In this research, we aimed to develop a 3D-printable hydrogel using a natural biocompatible polymer. The process is based on the use of sodium alginate subjected to calcium ion cross-linking for immediate stiffness after printing. Using the Cellink INKREDIBLE+ printer (Cellink Inc., Goteborg, Sweden), 3D structures were successfully produced. The developed bioink exhibited a viscosity suitable for extrusion printing while ensuring its structural integrity at the same time. Next, 3D spheroids developed by using bioinks were morphologically characterized by using light, a fluorescent microscope, and field emission scanning electron microscopy (FESEM). In conclusion, the properties of the construct obtained using the lab-formulated biocompatible polymer hydrogel suggest its potential use as a framework for three-dimensional cell culture, with possible applications in both fields of research and regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。