Prediction of Bronchopneumonia Inpatients' Total Hospitalization Expenses Based on BP Neural Network and Support Vector Machine Models.

阅读:5
作者:Wu Cuiyun, Zha Dahui, Gao Hong
OBJECTIVE: BP neural network (BPNN) model and support vector machine (SVM) model were used to predict the total hospitalization expenses of patients with bronchopneumonia. METHODS: A total of 355 patients with bronchopneumonia from January 2018 to December 2020 were collected and sorted out. The data set was randomly divided into a training set (n = 249) and a test set (n = 106) according to 7 : 3. The BPNN model and SVM model were constructed to analyze the predictors of total hospitalization expenses. The effectiveness was compared between these two prediction models. RESULTS: The top three influencing factors and their importance for predicting total hospitalization cost by the BPNN model were hospitalization days (0.477), age (0.154), and discharge department (0.083). The top 3 factors predicted by the SVM model were hospitalization days (0.215), age (0.196), and marital status (0.172). The area under the curve of these two models is 0.838 (95% CI: 0.755~0.921) and 0.889 (95% CI: 0.819~0.959), respectively. CONCLUSION: Both the BPNN model and SVM model can predict the total hospitalization expenses of patients with bronchopneumonia, but the prediction effect of the SVM model is better than the BPNN model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。