In the biomedical field, the time interval from infection to medical diagnosis is a random variable that obeys the log-normal distribution in general. Inspired by this biological law, we propose a novel back-projection infected-susceptible-infected-based long short-term memory (BPISI-LSTM) neural network for pandemic prediction. The multimodal data, including disease-related data and migration information, are used to model the impact of social contact on disease transmission. The proposed model not only predicts the number of confirmed cases, but also estimates the number of infected cases. We evaluate the proposed model on the COVID-19 datasets from India, Austria, and Indonesia. In terms of predicting the number of confirmed cases, our model outperforms the latest epidemiological modeling methods, such as vSIR, and intelligent algorithms, such as LSTM, for both short-term and long-term predictions, which shows the superiority of bio-inspired intelligent algorithms. In general, the use of mobility information improves the prediction accuracy of the model. Moreover, the number of infected cases in these three countries is also estimated, which is an unobservable but crucial indicator for the control of the pandemic.
Biology-Informed Recurrent Neural Network for Pandemic Prediction Using Multimodal Data.
阅读:4
作者:Ding Zhiwei, Sha Feng, Zhang Yi, Yang Zhouwang
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2023 | 起止号: | 2023 Apr 14; 8(2):158 |
| doi: | 10.3390/biomimetics8020158 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
