Similar experimental study on retaining waterproof coal pillar in composite strata mining.

阅读:7
作者:Wang Y Q, Wang X, Zhang J S, Yang B S, Zhu W J, Wang Z P
Numerous field examples of coal seam mining show that when coal seams under confined water are mined close to faults, water inrush effects on complex mining surfaces occur. Obeying similarity rules, physical similarity models consisting of sand, lime, and plaster were used to investigate the water conducting process, along with stress and displacement measured by a combination of mechanical senor, total station, and video camera-. Comparing the physical model tests with the calculation results of elastoplastic limit equilibrium theory, the rationality of the model has been verified. Besides, a safe width of the waterproof coal pillar has been obtained. It can be demonstrated from the model observations that the coal seam in front of the mining can be divided into three areas with different characteristics of stress and displacement, namely, which are the fault-affected area, the elastic area, and the plastic yield crack area. A closed-loop water inlet and outlet pipeline composed of a water control platform that can provide stable water pressure, and water bags pre-buried in the fault was used to simulate the water conduction in the fracture zone. Integrate the development law of stress, displacement, and water conduction coming from the upper and lower walls of the fault to further determine the reasonable width of the waterproof coal pillar.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。