Heavy metal stress, which is a serious environmental problem, affects both animal and human health through the food chain. However, such subtle stress information is difficult to detect in remote sensing images. Therefore, enhancing the stress signal is key to accurately identifying heavy metal contamination in crops. The aim of this study was to identify heavy metal stress in rice at a regional scale by mining the time-series characteristics of rice growth under heavy metal stress using the gated recurrent unit (GRU) algorithm. The experimental area was located in Zhuzhou City, Hunan Province, China. We collected situ-measured data and Sentinel-2A images corresponding to the 2019-2021 period. First, the spatial distribution of the rice in the study area was extracted using the random forest algorithm based on the Sentinel 2 images. Second, the time-series characteristics were analyzed, sensitive parameters were selected, and a GRU classification model was constructed. Third, the model was used to identify the heavy metals in rice and then assess the accuracy of the classification results using performance metrics such as the accuracy rate, precision, recall rate (recall), and F1-score (F1-score). The results showed that the GRU model based on the time series of the red-edge location feature index has a good classification performance with an overall accuracy of 93.5% and a Kappa coefficient of 85.6%. This study shows that regional heavy metal stress in crops can be accurately detected using the GRU algorithm. A combination of spectrum and temporal information appears to be a promising method for monitoring crops under various types of stress.
Temporal Characteristics of Stress Signals Using GRU Algorithm for Heavy Metal Detection in Rice Based on Sentinel-2 Images.
阅读:7
作者:Zhang Yu, Liu Meiling, Kong Li, Peng Tao, Xie Dong, Zhang Li, Tian Lingwen, Zou Xinyu
| 期刊: | International Journal of Environmental Research and Public Health | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Feb 23; 19(5):2567 |
| doi: | 10.3390/ijerph19052567 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
