BACKGROUND: Loss of function mutations in the EGLN1 gene are a cause of erythrocytosis. EGLN1 encodes for prolyl hydroxylase domain protein 2 (PHD2). PHD2 hydroxylates and downregulates hypoxia-inducible factor-2α (HIF-2α), a transcription factor that regulates erythropoiesis. While the large majority of erythrocytosis-associated EGLN1 mutations occur within its catalytic domain, rare mutations reside in its zinc finger. This zinc finger binds a Pro-Xaa-Leu-Glu motif in p23, an HSP90 cochaperone that facilitates hydroxylation of HIF-α, an HSP90 client. Essentially nothing is known about the specific interactions between the PHD2 zinc finger and p23. RESULTS: Here, we characterize an erythrocytosis-associated mutation in the zinc finger, K55N, that abolishes interaction with p23. We provide evidence that the affected residue, Lys-55, interacts with Asp-152 of p23. We also present results that indicate that PHD2 Arg-32 interacts with p23 Glu-160. CONCLUSION: These studies not only reinforce the importance of the PHD2 zinc finger in the control of erythropoiesis, but also lead to a model in which a peptide motif in p23 binds in a specific orientation to a predicted groove in the zinc finger of PHD2.
An Erythrocytosis-Associated Mutation in the Zinc Finger of PHD2 Provides Insights into Its Binding of p23.
阅读:7
作者:Song Daisheng, Guan Wei, Coon Lea M, Al-Kali Aref, Oliveira Jennifer L, Lee Frank S
| 期刊: | Hypoxia | 影响因子: | 0.000 |
| 时间: | 2019 | 起止号: | 2019 Dec 13; 7:81-86 |
| doi: | 10.2147/HP.S230502 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
