This study proposes a novel parallel denoising and temperature compensation fusion algorithm for MEMS ring gyroscopes. First, the particle swarm optimization (PSO) algorithm is used to optimize the time-varying filter-based empirical mode decomposition (TVFEMD), obtaining optimal decomposition parameters. Then, TVFEMD decomposes the gyroscope output signal into a series of product function (PF) signals and a residual signal. Next, sample entropy (SE) is employed to classify the decomposed signals into three categories: noise segment, mixed segment, and feature segment. According to the parallel model structure, the noise segment is directly discarded. Meanwhile, time-frequency peak filtering (TFPF) is applied to denoise the mixed segment, while the feature segment undergoes compensation. For compensation, the football team training algorithm (FTTA) is used to optimize the parameters of the long short-term memory (LSTM) neural network, forming a novel FTTA-LSTM architecture. Both simulations and experimental results validate the effectiveness of the proposed algorithm. After processing the MEMS gyroscope output signal using the PSO-TVFEMD-SE-TFPF denoising algorithm and the FTTA-LSTM temperature drift compensation model, the angular random walk (ARW) of the MEMS gyroscope is reduced to 0.02°/âh, while the bias instability (BI) decreases to 2.23°/h. Compared to the original signal, ARW and BI are reduced by 99.43% and 97.69%, respectively. The proposed fusion-based temperature compensation method significantly enhances the temperature stability and noise performance of the gyroscope.
Temperature Compensation Method for MEMS Ring Gyroscope Based on PSO-TVFEMD-SE-TFPF and FTTA-LSTM.
阅读:3
作者:Huang Hongqiao, Ye Wen, Liu Li, Wang Wenjing, Wang Yan, Cao Huiliang
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2025 | 起止号: | 2025 Apr 26; 16(5):507 |
| doi: | 10.3390/mi16050507 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
