BACKGROUND: Improving reproductive performance in Yorkshire pigs, a key maternal line in three-way crossbreeding systems, remains challenging due to low heritability and historical selection pressures favoring production traits. Identifying pleiotropic genetic variants that influence both reproduction and production traits is crucial for understanding their genetic interplay and enhancing molecular breeding strategies. RESULTS: Genome-wide association studies (GWAS) using 2,764 individuals identified 264,660 significant loci associated with reproduction traits and 12,460 loci for production traits, with 73 independent signals, including genes such as SCLT1 and CAPN9. A total of 465,047 independent loci were identified, resulting in a genome-wide significance threshold of 2.15Â ÃÂ 10-6 . Genetic correlations analysis between reproduction and production traits across parities revealed varying trends, including a strengthening negative correlation between mean litter weight (MLW) and backfat thickness (BFT) with increasing parity (P1: rg =-0.0376; P2: rg =-0.1371; P3: rg =-0.1475). Given 1062 shared significant loci between MLW and BFT, local genetic correlation was calculated within the corresponding genomic regions, resulting in a weak correlation of 0.014. Transcriptome-wide association studies (TWAS) leveraging data from the PigGTEx project, which includes 9,530 RNA-sequencing samples across 34 tissues, revealed 2,143 significant genes, with 31 linked to total number of piglets born (TNB) and 133 to number of piglets born alive (NBA). These results highlight the importance of these genes in reproductive performance, with SCLT1 being notably significant in reproductive tissues. For MLW, integrating results from multiple analyses revealed CENPE as a strong candidate gene, exhibiting significant association and colocalization. Validation in an independent population (nâ=â300) showed that incorporating the top 0.2% of significant single nucleotide polymorphisms (SNPs) in the GFBLUP model improved predictive accuracy, increasing from 0.0168 to 0.0242 for MLW. CONCLUSION: This study provides new insights into the pleiotropic genetic architecture underlying reproduction and production traits in Yorkshire pigs. Genetic correlations, shared loci, and candidate genes inform breeding program design. The increased accuracy of genomic selection using these significant loci highlights their practical utility in improving breeding efficiency. These findings suggest opportunities for refining selection strategies, although further research is warranted to fully realize their potential for enhancing breeding programs.
Integrative genomic analysis reveals shared loci for reproduction and production traits in Yorkshire pigs.
阅读:5
作者:Wei Ran, Zhang Zhenyang, Han He, Miao Jian, Yu Pengfei, Cheng Hong, Zhao Wei, Hou Xiaoliang, Wang Jianlan, He Yongqi, Fu Yan, Wang Zhen, Wang Qishan, Zhang Zhe, Pan Yuchun
| 期刊: | BMC Genomics | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Mar 29; 26(1):310 |
| doi: | 10.1186/s12864-025-11416-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
