Inferring directed spectral information flow between mixed-frequency time series.

阅读:3
作者:Xian Qiqi, Chen Zhe Sage
Identifying directed spectral information flow between multivariate time series is important for many applications in finance, climate, geophysics and neuroscience. Spectral Granger causality (SGC) is a prediction-based measure characterizing directed information flow at specific oscillatory frequencies. However, traditional vector autoregressive (VAR) approaches are insufficient to assess SGC when time series have mixed frequencies (MF) or are coupled by nonlinearity. Here we propose a time-frequency canonical correlation analysis approach ("MF-TFCCA") to assess the strength and driving frequency of spectral information flow. We validate the approach with extensive computer simulations on MF time series under various interaction conditions and further assess statistical significance of the estimate with surrogate data. In various benchmark comparisons, MF-TFCCA consistently outperforms the traditional parametric MF-VAR model in both computational efficiency and detection accuracy, and recovers the dominant driving frequencies. We further apply MF-TFCCA to real-life finance, climate and neuroscience data. Our analysis framework provides an exploratory and computationally efficient nonparametric approach to quantify directed information flow between MF time series in the presence of complex and nonlinear interactions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。