Adrenomedullin protects Leydig cells against lipopolysaccharide-induced oxidative stress and inflammatory reaction via MAPK/NF-κB signalling pathways.

阅读:3
作者:Hu Wei, Shi Lei, Li Ming-Yong, Zhou Pang-Hu, Qiu Bo, Yin Ke, Zhang Hui-Hui, Gao Yong, Kang Ran, Qin Song-Lin, Ning Jin-Zhuo, Wang Wei, Zhang Li-Jun
This study aimed to explore the possible benefits of adrenomedullin (ADM) in preventing oxidative stress and inflammation by using an in vitro primary culture model of rat Leydig cells exposed to lipopolysaccharide (LPS). Cell proliferation was detected through CCK-8 and BrdU incorporation assays. ROS were determined with a DCFDA kit, and cytokine concentrations were measured with ELISA assay kits. Protein production was examined by immunohistochemical staining and Western blot, and gene expression was observed through RT-qPCR. Results revealed that ADM significantly reduced LPS-induced cytotoxicity, and pretreatment with ADM significantly suppressed ROS overproduction and decreased 4-HNE and 8-OHdG expression levels and concentrations. ADM pretreatment also significantly attenuated the overactivation of enzymatic antioxidants, namely, superoxide dismutase, catalase, thioredoxin reductase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase. ADM supplementation reversed the significantly increased gene expression levels and concentrations of TNF-α, IL-1β, TGF-β1, MCP-1 and MIF. ADM pretreatment significantly inhibited the gene expression and protein production of TLR-2 and 4. Furthermore, ADM pretreatment markedly reduced the phosphorylation of JNK, ERK 1/2 and p38, phosphorylation and degradation of IκBα and nuclear translocation of p65. Our findings demonstrated that ADM protects Leydig cells from LPS-induced oxidative stress and inflammation, which might be associated with MAPK/NF-κB signalling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。