The use of nanoparticles as an alternative to traditional fertilizers, aiming at a more efficient use of nutrients, is a recently developed concept that requires a thorough understanding of the processes occurring in the soil-plant system. A crucial aspect in this framework is to decipher the plant responses to the unique characteristics of these materials. In this work, we aim at decoding the transcriptional responses of cucumber and maize roots to FePO(4) nanoparticles applied as P and Fe sources, respectively. The results demonstrate that P and Fe supplied as nanoscale salts support plant nutrition with an efficiency comparable to that of ionic forms of the nutrients. This supposition is confirmed by transcriptomic profiles that show no significant upregulation of transcripts typically induced by deficiencies in P and Fe in cucumber and maize plants in which these nutrients were provided by FePO(4) nanoparticles. The analysis further revealed that nanoparticles alter the expression of genes involved in root development and stress responses, effect that appeared to be independent on the nutritional status of the plants. Our data further underline the challenge to identify generalizable elements of the impact of nanomaterials on plant species, as responses are intimately linked to the type of nanomaterials and differ among plant species.
Early transcriptomic changes in cucumber and maize roots in response to FePO(4) nanoparticles as a source of P and Fe.
阅读:4
作者:Ciurli Andrea, Zamboni Anita, Varanini Zeno
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 6; 15(1):11786 |
| doi: | 10.1038/s41598-025-95989-6 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
