Acoustic percolation switches enable targeted drug delivery controlled by diagnostic ultrasound.

阅读:4
作者:Abundo Maria Paulene, Tifrea Anna T, Buss Marjorie T, Barturen-Larrea Pierina, Jin Zhiyang, Malounda Dina, Shapiro Mikhail G
Delivering biomedicines to specific sites of disease using remote-controlled devices is a long-standing vision in biomedical research. However, most existing externally triggered delivery systems are based on complex micromachines that are controlled with electromagnetic waves and require custom external instrumentation. Here, we present a drug delivery platform based on a simple protein-containing hydrogel that can be both imaged and triggered to release drugs at specific locations using widely available diagnostic ultrasound devices. This technology is based on the addition of air-filled protein nanostructures called gas vesicles (GVs) to hydrogel delivery vehicles. While intact, GVs sterically block the release of drug payloads and allow the vehicle to be imaged with ultrasound. An increase in ultrasound pressure causes the collapse of GVs within the delivery vehicles at the desired anatomical location, instantly creating percolation channels in the hydrogel, massively increasing diffusivity, and leading to rapid drug release. Unlike previous ultrasound-actuated delivery approaches, both the imaging and release are performed using a simple diagnostic ultrasound probe ubiquitously available in clinical settings. We implement this concept by quantifying ultrasound-controlled drug diffusion and release in vitro and demonstrating image-guided protein delivery in vivo in the gastrointestinal (GI) tract following oral administration. We further validate this technology by using it to deliver anti-inflammatory antibodies to effectively treat a rat model of colitis. Targeted acoustic percolation switches (TAPS) open a conduit for local, image-guided drug delivery with a simple formulation and commonplace ultrasound equipment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。