Predicting the histopathology of residual retroperitoneal masses (RMMs) before post-chemotherapy retroperitoneal lymph node dissection in metastatic nonseminomatous germ cell tumors (NSGCTs) can guide individualized treatment and minimize complications. Previous single approach-based models perform poorly in validation. Herein, we introduce a machine learning model that evolves from a single-dimensional tumor diameter to incorporate high-dimensional radiomic features, with its effectiveness assessed using the macro-average area under the receiver operating characteristic curves (AUCs). In addition, we utilize more precise and specific microRNAs (miRNAs), not common clinical indicators, to construct an integrated radiomics-miRNA predictive system, achieving an AUC of 0.91 (0.80-0.99) in the prospective test set. We further develop a web-based dynamic nomogram for swift and precise calculation of the histopathological probabilities of RMMs based on radiomic scores and serum miRNA levels. The radiomics-miRNA integrated system offers a promising tool to select personalized treatments for patients with metastatic NSGCT.
A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors.
阅读:4
作者:Li Xiangdong, Ding Renjie, Liu Zhenhua, Teixeira Wilhem M S, Ye Jingwei, Tian Li, Li Haojiang, Guo Shengjie, Yao Kai, Ma Zikun, Liu Zhuowei
| 期刊: | Cell Reports Medicine | 影响因子: | 10.600 |
| 时间: | 2024 | 起止号: | 2024 Dec 17; 5(12):101843 |
| doi: | 10.1016/j.xcrm.2024.101843 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
