Spectroscopic studies on photosynthetic electron transfer generally are based upon the monitoring of dark to light changes in the electron transfer chain. These studies, which focus on the light reactions of photosynthesis, also indirectly provide information on the redox or metabolic state of the chloroplast in the dark. Here, using the unicellular microalga Chlamydomonas reinhardtii, we study the impact of heterotrophic/mixotrophic acetate feeding on chloroplast carbon metabolism by using the spectrophotometric detection of P700(+), the photooxidized primary electron donor of photosystem I. We show that, when photosynthetic linear and cyclic electron flows are blocked (DCMU inhibiting PSII and methylviologen accepting electrons from PSI), the post-illumination reduction kinetics of P700(+) directly reflect the dark metabolic production of reductants (mainly NAD(P)H) in the stroma of chloroplasts. Such results can be correlated to other metabolic studies: in the absence of acetate, for example, the P700(+) reduction rate matches the rate of starch breakdown reported previously, confirming the chloroplast localization of the upstream steps of the glycolytic pathway in Chlamydomonas. Furthermore, the question of the interplay between photosynthetic and non-photosynthetic carbon metabolism can be addressed. We show that cyclic electron flow around photosystem I is twice as fast in a starchless mutant fed with acetate than it is in the WT, and we relate how changes in the flux of electrons from carbohydrate metabolism modulate the redox poise of the plastoquinone pool in the dark through chlororespiration.
Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii.
阅读:5
作者:Johnson Xenie, Alric Jean
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2012 | 起止号: | 2012 Jul 27; 287(31):26445-52 |
| doi: | 10.1074/jbc.M112.370205 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
