Current sonochemical methods rely on spatially uncontrolled cavitation for radical species generation to promote chemical reactions. To improve radical generation, sonosensitizers have been demonstrated to be activated by cavitation-based light emission (sonoluminescence). Unfortunately, this process remains relatively inefficient compared to direct photocatalysis, due to the physical separation between cavitation event and sonosensitizing agent. In this study, we have synthesized nanostructured titanium dioxide particles to couple the source for cavitation within a photocatalytic site to create a sonophotocatalyst. In doing so, we demonstrate that site-controlled cavitation from the nanoparticles using pulsed ultrasound at reduced acoustic powers resulted in the sonochemical degradation methylene blue at rates nearly three orders of magnitude faster than other titanium dioxide-based nanoparticles by conventional methods. Sonochemical degradation was directly proportional to the measured cavitation produced by these sonophotocatalysts. Our work suggests that simple nanostructuring of current sonosensitizers to enable on-site cavitation greatly enhances sonochemical reaction rates.
Nanostructured TiO(2) cavitation agents for dual-modal sonophotocatalysis with pulsed ultrasound.
阅读:3
作者:Jonnalagadda U S, Su X, Kwan J J
| 期刊: | Ultrasonics Sonochemistry | 影响因子: | 9.700 |
| 时间: | 2021 | 起止号: | 2021 May;73:105530 |
| doi: | 10.1016/j.ultsonch.2021.105530 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
