BACKGROUND: One of the main objectives of microarray analysis is to identify differentially expressed genes for different types of cells or treatments. Many statistical methods have been proposed to assess the treatment effects in microarray experiments. RESULTS: In this paper, we consider discovery of the genes that are differentially expressed among K (> 2) treatments when each set of K arrays consists of a block. In this case, the array data among K treatments tend to be correlated because of block effect. We propose to use the blocked one-way ANOVA F-statistic to test if each gene is differentially expressed among K treatments. The marginal p-values are calculated using a permutation method accounting for the block effect, adjusting for the multiplicity of the testing procedure by controlling the false discovery rate (FDR). We propose a sample size calculation method for microarray experiments with a blocked one-way design. With FDR level and effect sizes of genes specified, our formula provides a sample size for a given number of true discoveries. CONCLUSION: The calculated sample size is shown via simulations to provide an accurate number of true discoveries while controlling the FDR at the desired level.
Sample size calculation for microarray experiments with blocked one-way design.
阅读:12
作者:Jung Sin-Ho, Sohn Insuk, George Stephen L, Feng Liping, Leppert Phyllis C
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2009 | 起止号: | 2009 May 28; 10:164 |
| doi: | 10.1186/1471-2105-10-164 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
