Comparative phenotypic and proteomic analysis of colistin-exposed Pseudomonas aeruginosa.

阅读:4
作者:Tran Nguyen Bao Vy, Huynh Thuc Quyen, Ngo Hong Loan, Nguyen Ngoc Hoa Binh, Nguyen Thi Hiep, Tong Thi Hang, Trinh Thi Truc Ly, Nguyen Van Dung, Pham Le Nhat Minh, Das Prem Prakash, Lim Teck Kwang, Lin Qingsong, Nguyen Thi Thu Hoai
INTRODUCTION: The emergence of colistin resistance threatens the treatment of Pseudomonas aeruginosa infections. METHODS: In this study, in vitro development of colistin resistance was investigated using comparative phenotypic and proteomic analysis of P. aeruginosa ATCC 9027, its 14-day colistin sub-MIC exposed strain (Col-E1), and 10-day antibiotic-free cultured Col-E1 strain (Col-E2). Antibiotic susceptibility, morphology, virulence factors, and proteomic changes were assessed using disc-diffusion, agar-based, spectrophotometry, SEM, and iTRAQ-LC-MS/MS methods. RESULTS: Colistin-exposed strains decreased susceptibility to colistin while remaining susceptible to other antibiotics. Col-E1 reduced the cell lengths by 17.67% and the colony size by 36.16% compared to the initial strain. The reduction remained in Col-E2. The pyocyanin production was reduced in Col-E1 (p=0.025, Tukey HSD) and increased again in Col-E2 (p=0.005, Tukey HSD). In contrast, no significant changes in elastase, protease, rhamnolipid, pyoverdine, and biofilm production were observed (p>0.05, Tukey HSD). In Col-E1, the proteome analysis showed 135 differentially expressed proteins (DEPs) of which 94 DEPs (69.23%) maintained their expression change in Col-E2. Among DEPs, 82 were involved in metabolism and protein synthesis. Some DEPs (6/135) played a role in stress response such as GrpE (fold change: 14.93) and Hmp (fold change: 12.08). In particular, membrane proteins like OprD, DdlB, and OprI showed significant colistin response with fold change of -8.47, 6.43 and 6.19, respectively. CONCLUSIONS: In summary, colistin response in P. aeruginosa seemed to affect morphology, production of pyocyanin, and proteins of metabolism, protein synthesis, stress response and membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。