Copper doped hydroxyapatite nanocomposite thin films: synthesis, physico-chemical and biological evaluation.

阅读:7
作者:Ciobanu Carmen Steluta, Predoi Daniela, Iconaru Simona Liliana, Predoi Mihai Valentin, Ghegoiu Liliana, Buton Nicolas, Motelica-Heino Mikael
Cu-doped hydroxyapatite (CuHAp) thin films were obtained using spin coating method. To make these thin films, CuHAp suspensions obtained by sol-gel method were used. The coatings obtained were thermally treated at 500 °C. After the thermal treatment, the thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). Moreover, the stability of the suspensions before being used to obtain the thin films was certified by dynamic light scattering (DLS), zeta potential methods and ultrasound measurements. In the XRD patterns, the peaks associated with hexagonal hydroxyapatite were identified in accordance with JCPDS no. 09-0432. EDS and XPS results confirmed the presence of Cu ions in the samples. Data about the morphological features and chemical composition of CuHAp thin films were obtained by performing scanning electron microscopy (SEM) measurements. Our results suggest that the CuHAp thin films surface is continuous and homogenous. The presence of the functional groups in the CuHAp thin films was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy studies. Information about the surface topography of the CuHAp thin films has been obtained using atomic force microscopy (AFM). The AFM images determined that the surface topography of the CuHAp thin layer is homogenous and continuous without presenting any unevenness or fissures. The cytotoxicity of CuHAp thin films was assessed using human gingival fibroblasts (HGF-1) cells. The results of the cell viability assays demonstrated that the thin films presented good biocompatible properties towards the HGF-1 cells. Additionally, the adherence and development of HGF-1 cells on the surface of CuHAp thin films were determined using AFM. The AFM surface topographies highlighted that the CuHAp thin film's surface favored the attachment and proliferation of HGF-1 cells on their surface.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。