Assessing Microbial Activity and Rhizoremediation in Hydrocarbon and Heavy Metal-Impacted Soil.

阅读:5
作者:Conlon Robert, Dowling David N, Germaine Kieran J
Rhizodegradation enhances pollutant degradation through plant-microbe interactions in the rhizosphere. Plant roots provide a colonisation surface and root exudates that promote microbial abundance and activity, facilitating organic pollutant breakdown via direct microbial degradation and co-metabolism. This study assessed the rhizodegradation of weathered petroleum hydrocarbons (PHCs) in heavy metal co-contaminated soil in a microcosm-scale pot trial. Treatments included Sinapis alba, Lolium perenne, a L. perenne + Trifolium repens mix, and Cichorium intybus, alongside a non-planted control. After 14 weeks, PHC concentrations were analysed via gas chromatography, and rhizosphere microbial communities were characterised through sequencing. Sinapis alba achieved the highest PHC degradation (68%), significantly exceeding the non-planted control (p < 0.05, Kruskal-Wallis test). Hydrocarbon-degrading bacteria, including KCM-B-112, C1-B045, Hydrogenophaga, unclassified Saccharimonadales sp., and Pedobacter, were enriched in the rhizosphere, with the uncultured clade mle1-27 potentially contributing indirectly. Metals analysis of plant tissues showed that mustard could accumulate copper more than lead and zinc, despite higher concentrations of zinc and lead in the soil. These results highlight the potential of S. alba for rhizoremediation in PHC-heavy metal co-contaminated soils.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。