The Antinociceptive and Anti-Inflammatory Properties of the α7 nAChR Weak Partial Agonist p-CF(3) N,N-diethyl-N'-phenylpiperazine.

阅读:3
作者:Quadri Marta, Bagdas Deniz, Toma Wisam, Stokes Clare, Horenstein Nicole A, Damaj M Imad, Papke Roger L
Chronic pain and inflammatory diseases can be regulated by complex mechanisms involving α7 nicotinic acetylcholine receptors (nAChRs), making this subtype a promising drug target for anti-inflammatory therapies. Recent evidence suggests that suchtreatment of inflammatory pain may rely on metabotropic-like rather than ionotropic activation of the α7 receptor subtype in non-neuronal cells. We previously identified para-trifluoromethyl (p-CF(3)) N,N-diethyl-N'-phenylpiperazinium (diEPP) iodide to be among the compounds classified as silent agonists, which are very weak α7 partial agonists that are able to induce positive allosteric modulator (PAM)-sensitive desensitization. Such drugs have been shown to selectively promote α7 ionotropic-independent functions. Therefore, we here further investigated the electrophysiological profile of p-CF(3) diEPP and its in vivo antinociceptive activity using Xenopus oocytes expressing α7, α4β2, or α3β4 nAChRs. The evoked currents confirmed p-CF(3) diEPP to be α7-selective with a maximal agonism 5% that of acetylcholine (ACh). Coapplication of p-CF(3) diEPP with the type II PAM 4-naphthalene-1-yl-3a,4,5,9b-tetrahydro-3-H-cyclopenta[c]quinoline-8-sulfonic acid amide (TQS) produced desensitization that could be converted to PAM-potentiated currents, which at a negative holding potential were up to 13-fold greater than ACh controls. Voltage-dependence experiments indicated that channel block may limit both control ACh and TQS-potentiated responses. Although no p-CF(3) diEPP agonist activity was detected for the heteromeric nAChRs, it was a noncompetitive antagonist of these receptors. The compound displayed remarkable antihyperalgesic and antiedema effects in in vivo assays. The antinociceptive activity was dose and time dependent. The anti-inflammatory components were sensitive to the α7-selective antagonist methyllycaconitine, which supports the idea that these effects are mediated by the α7 nAChR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。