The role of the human SWI5-MEI5 complex in homologous recombination repair.

阅读:4
作者:Yuan Jingsong, Chen Junjie
The Swi5-Mei5 complex and its homologues are involved in specialized recombination pathways in budding and fission yeasts. Although the fission yeast homologue Swi5-Sfr1 is critical for homologous recombination repair, the budding yeast counterpart Sae3-Mei5 is meiosis-specific, interacts with Dmc1, and promotes assembly of Dmc1 on meiotic chromosomes. Here, we identify and characterize the human SWI5-MEI5 (C9orf119-C10orf78) complex. We showed that SWI5 and MEI5 form a stable complex in vitro and in vivo. The C-terminal Swi5 domain of SWI5 and the middle coiled-coil region of MEI5 dictate this conserved interaction. In addition, SWI5-MEI5 directly interacts with RAD51 in vitro. Depletion of SWI5 or MEI5 in human cells causes defects in homologous recombination repair. Finally, SWI5- or MEI5-depleted cells display enhanced sensitivity to ionizing radiation, consistent with the role of this complex in HR repair. Our results suggest that human SWI5-MEI5 has an evolutionarily conserved function in homologous recombination repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。