Patient representation learning aims to encode meaningful information about the patient's Electronic Health Records (EHR) in the form of a mathematical representation. Recent advances in deep learning have empowered Patient representation learning methods with greater representational power, allowing the learned representations to significantly improve the performance of disease prediction models. However, the inherent shortcomings of deep learning models, such as the need for massive amounts of labeled data and inexplicability, limit the performance of deep learning-based Patient representation learning methods to further improvements. In particular, learning robust patient representations is challenging when patient data is missing or insufficient. Although data augmentation techniques can tackle this deficiency, the complex data processing further weakens the inexplicability of patient representation learning models. To address the above challenges, this paper proposes an Explainable and Augmented Patient Representation Learning for disease prediction (EAPR). EAPR utilizes data augmentation controlled by confidence interval to enhance patient representation in the presence of limited patient data. Moreover, EAPR proposes to use two-stage gradient backpropagation to address the problem of unexplainable patient representation learning models due to the complex data enhancement process. The experimental results on real clinical data validate the effectiveness and explainability of the proposed approach.
EAPR: explainable and augmented patient representation learning for disease prediction.
阅读:5
作者:Zhang Jiancheng, Xu Yonghui, Ye Bicui, Zhao Yibowen, Sun Xiaofang, Meng Qi, Zhang Yang, Cui Lizhen
| 期刊: | Health Information Science and Systems | 影响因子: | 3.400 |
| 时间: | 2023 | 起止号: | 2023 Nov 14; 11(1):53 |
| doi: | 10.1007/s13755-023-00256-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
