Expression patterns of cardiac myofilament proteins: genomic and protein analysis of surgical myectomy tissue from patients with obstructive hypertrophic cardiomyopathy

心脏肌丝蛋白的表达模式:阻塞性肥厚型心肌病患者手术肌切除组织的基因组和蛋白质分析

阅读:7
作者:Jeanne L Theis, J Martijn Bos, Jason D Theis, Dylan V Miller, Joseph A Dearani, Hartzell V Schaff, Bernard J Gersh, Steve R Ommen, Richard L Moss, Michael J Ackerman

Background

Mutations in myofilament proteins, most commonly MYBPC3-encoded myosin-binding protein C and MYH7-encoded beta-myosin heavy chain, can cause hypertrophic cardiomyopathy (HCM). Despite significant advances in structure-function relationships pertaining to the cardiac sarcomere, there is limited knowledge of how a mutation leads to clinical HCM. We, therefore, set out to study expression and localization of myofilament proteins in left ventricular tissue of patients with HCM.

Conclusions

In this first expression study in human HCM tissue, increased myofilament protein levels in patients with either MYBPC3- or MYH7-mediated HCM suggest a poison peptide mechanism. Specifically, the mechanism of dysfunction may vary according to the genetic subgroup suggested by a distinctly abnormal distribution of myofilament proteins in patients manifesting a truncation mutation in MYBPC3.

Results

Frozen surgical myectomy specimens from 47 patients with HCM were examined and genotyped for mutations involving 8 myofilament-encoding genes. Myofilament protein levels were quantified by Western blotting with localization graded from immunohistochemical staining of tissue sections. Overall, 25 of 47 (53%) patients had myofilament-HCM, including 12 with MYBPC3-HCM and 9 with MYH7-HCM. As compared with healthy heart tissue, levels of myofilament proteins were increased in patients manifesting a mutation in either gene. Patients with a frameshift mutation predicted to truncate MYBPC3 exhibited marked disturbances in protein localization as compared with missense mutations in either MYBPC3 or MYH7. Conclusions: In this first expression study in human HCM tissue, increased myofilament protein levels in patients with either MYBPC3- or MYH7-mediated HCM suggest a poison peptide mechanism. Specifically, the mechanism of dysfunction may vary according to the genetic subgroup suggested by a distinctly abnormal distribution of myofilament proteins in patients manifesting a truncation mutation in MYBPC3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。