Rhodococcus sp. P14 is able to degrade various polycyclic aromatic hydrocarbons (PAHs). In this study, 6 ring-hydroxylating dioxygenases and 24 monooxygenases genes related to PAHs degradation were identified in its genome. Moreover, various genes, like serine hydrolase, hydratase, alcohol dehydrogenase, protocatechuate 3,4-dioxygenase, β-ketoadipate CoA transferase and β-Ketoadipyl CoA thiolase, which were supposed to be involved in PAHs degradation were also identified. Based on the genome analysis, the proposed PAHs degradation pathway was constructed in P14 strain, which showed that PAHs was degraded into the acetyl CoA and succinyl CoA, then mineralized to CO(2) via the TCA cycle. Furthermore, several genes, including cytochrome P450 (RS16725; RS16695; RS12220), catalase (RS15825), dehydrogenase (RS15755; RS18420) and hydrolase (RS16460; RS24665), showed increased expression level during PAHs degradation according to the transcriptome data. In addition, 12 novel sRNAs which were supposed to have the regulation function in PAHs degradation were identified. This study gives us the outlook of PAHs degradation pathway in Rhodococcus sp. P14. Moreover, it first demonstrates that sRNAs may harbor the regulation function in PAHs degradation.
Genes and novel sRNAs involved in PAHs degradation in marine bacteria Rhodococcus sp. P14 revealed by the genome and transcriptome analysis.
阅读:5
作者:Peng Tao, Kan Jie, Hu Jing, Hu Zhong
| 期刊: | 3 Biotech | 影响因子: | 2.900 |
| 时间: | 2020 | 起止号: | 2020 Mar;10(3):140 |
| doi: | 10.1007/s13205-020-2133-6 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
