Global finite-time stability of delayed quaternion-valued neural networks based on a class of extended Lyapunov-Razumikhin methods.

阅读:4
作者:Li Chengsheng, Cao Jinde, Kashkynbayev Ardak
In this paper, a class of global finite-time stability problem for quaternion-valued neural networks with time-varying delays are investigated by adopting an extended modification Lyapunov-Razumikhin (L-R) method and a new upper bounds estimation of system solution in terms of convergence rate was obtained. Firstly, a new extended method of L-R is proposed to solve the general difficulty to find a proper Lyapunov functional. Then, a new suitable controller is designed, the new conditions of inequalities global finite-time stability are obtained via combining with the former proposed L-R method in the separated real-valued system. Finally, for purpose of verifying the availability of the theorem presented, two given illustrative examples are shown.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。