Urea transport in human red blood cells: Donor variation compared to chloride, glucose, and water transport.

阅读:5
作者:Leifelt Jonas, Dziegiel Morten Hanefeld, Brahm Jesper
We determined the permeability (P, cm/s) of unmodified human red blood cells (HRBC) to urea (Pu), chloride (PCl), glucose (Pglu), and water diffusion (Pd) under conditions of self-exchange (SE) with the continuous flow tube method at pH 7.2, 25°C. Among 24 donors, Pu at 1 mM varied >100%. Two of the donors were also tested in 1983. Their Pu had decreased by 77 and 90%. High age in males and Kidd genotype Jk(a+,b+), but not blood types AB0, appear related to low Pu. For one of the two donors, PCl (150 mM, 38°C, pH 7.2), Pglu (1 mM, 38°C, pH 7.2), and Pd (55.5 M, 25°C, pH 7.2) were determined then and now and showed no significant changes with age. The results from six more donors show donor PCl, Pglu, and Pd in the range of ≈1%. PCl and Pglu are vital for the metabolism of cells and tissues, and we see but little donor variation, and so far, no phenotypes without glucose (GLUT1) and anion (AE1) transporters in HRBC. Phenotypes with no urea transporter (UT-B) or no water transporters (aquaporin, AQP1) are registered and are compatible with life. Our results are in line with the concept that the solutes do not share pathways in common. The great donor variation in Pu must be considered in comparative transport physiological studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。