Peripheral nerve injuries (PNIs) have a significant impact on the quality of life for patients suffering from trauma or disease. In injuries with critical nerve gaps, PN regeneration requires tissue scaffolds with appropriate physiological properties that promote cell growth and functions. Hydrogel scaffolds represent a promising platform for engineering soft tissue constructs that meet key physiological requirements. Nonetheless, ongoing innovation remains essential, as current designs continue to fall short of replicating the functional performance of autografts in bridging critical-sized nerve defects. In this study, gelatin methacrylate (gelMA)-based hydrogels are evaluated to fully characterize their pore structure, compressive stiffness, viscoelasticity, and 3D bioprintability. Hyaluronic acid (HA) and single-walled carbon nanotubes (SWCNTs) are explored as gelMA additives to modify viscoelastic and electrically conductive properties, respectively. Finally, Schwann cell (SC) and human umbilical vein endothelial cell (HUVEC) growth and functions are quantified to assess the biocompatibility of the hydrogel composites as materials for nerve scaffold fabrication. It was found that the microstructure and mechanical properties of gelMA-based hydrogels can be precisely controlled by modifying the concentrations of each component. The addition of HA led to altered viscoelastic properties of the cured structures and SWCNTs increased electrical conductivity, with both additives maintaining cytocompatibility while influencing the protein expression of both SCs and HUVECs. These composite hydrogels have potential in PNI regeneration applications.
Development of GelMA-Based Hydrogel Scaffolds with Tunable Mechanical Properties for Applications in Peripheral Nerve Regeneration.
阅读:10
作者:Schmitz Kylie M, Larson Tanner L, Borovich Michael W, Wu Xianfang, Ao Geyou, Jack Megan, Ning Liqun
| 期刊: | ACS Biomaterials Science & Engineering | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Sep 8; 11(9):5467-5481 |
| doi: | 10.1021/acsbiomaterials.5c00023 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
