Interrogation of the Intermolecular Forces That Drive Bulk Properties of Molecular Crystals with Terahertz Spectroscopy and Density Functional Theory.

阅读:7
作者:Stoll William B, Banks Peter A, Dannenberg Steven G, Waterman Rory, Catalano Luca, Ruggiero Michael T
Identifying and characterizing intermolecular forces in the condensed phase is crucial for understanding both micro- and macroscopic properties of solids; ranging from solid-state reactivity to thermal expansion. Insight into these interactions enables a holistic comprehension of bulk properties, and thus understanding them has direct implications for supramolecular design. However, even modest changes to intermolecular interactions can create unpredictable changes to solid-state structures and dynamics. For example, copper-(II) acetylacetonate (Cu-(C(5)H(7)O(2))(2)) and copper-(II) hexafluoroacetylacetonate (Cu-(C(5)HF(6)O(2))(2)) exhibit similar molecular conformations, yet differences between the methyl and trifluoromethyl groups produce distinct sets of intermolecular forces in the condensed phase. Ultimately, these differences produce unique molecular arrangements in the solid state, with corresponding differences in material properties between the two crystals. In this work, terahertz spectroscopy is used to measure low-frequency vibrational dynamics, which, by extension, provide detailed insight into the underlying intermolecular forces that exist in each system. The experimental data is coupled to theoretical quantum mechanical simulations to precisely quantify the interplay between various energetic effects, and these results highlight the delicate balance that is struck between electronic and dispersive interactions that underpin the structural and related differences between the two systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。