A subset of neutrophil phagosomes is characterised by pulses of Class I PI3K activity.

阅读:5
作者:Muir Clare F, Reyes-Aldasoro Constantino Carlos, Prajsnar Tomasz K, Michno Bartosz J, Cholewa-Waclaw Justyna, Ho Yin X, Bernut Audrey, Loynes Catherine A, Elworthy Stone, Bowden Kieran A, Cadby Ashley J, Prince Lynne R, King Jason S, Ellett Felix, Condliffe Alison M, Renshaw Stephen A
Class I PI3 kinases (PI3Ks) coordinate the delivery of microbicidal effectors to the phagosome by forming phosphatidylinositol (3,4,5)-trisphosphate (PIP3). However, the dynamics of PIP3 in neutrophils during a live bacterial tissue infection are unknown. We therefore developed an in vivo, live zebrafish infection model that enables visualisation of dynamic changes in Class 1 PI3K signalling in neutrophil phagosomes in real time. We identified that, on ∼12% of neutrophil phagosomes, PHAkt-eGFP, a reporter for Class 1 PI3K signalling, repeatedly fades and re-recruits in pulsatile bursts. This phenomenon occurred on phagosomes containing live and dead bacteria as well as beads, and was dependent on the activity of the Class 1 PI3K isoform PI3Kγ. Detailed imaging suggested that pulsing phagosomes represent neutrophils transiently re-opening and re-closing phagosomes, a conclusion supported by observations that a subset of phagosomes in human neutrophils rapidly accumulate dye from the extracellular space. Therefore, we propose that some neutrophil phagosomes remain unsealed and are consequently able to exchange contents with the extracellular environment, with implications for phagosome fate and communication with surrounding cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。