Chimp optimization algorithm (ChoA) has a wholesome attitude roused by chimp's amazing thinking and hunting ability with a sensual movement for finding the optimal solution in the global search space. Classical Chimps optimizer algorithm has poor convergence and has problem to stuck into local minima for high-dimensional problems. This research focuses on the improved variants of the chimp optimizer algorithm and named as Boosted chimp optimizer algorithms. In one of the proposed variants, the existing chimp optimizer algorithm has been combined with SHO algorithm to improve the exploration phase of the existing chimp optimizer and named as IChoA-SHO and other variant is proposed to improve the exploitation search capability of the existing ChoA. The testing and validation of the proposed optimizer has been done for various standard benchmarks and Non-convex, Non-linear, and typical engineering design problems. The proposed variants have been evaluated for seven standard uni-modal benchmark functions, six standard multi-modal benchmark functions, ten standard fixed-dimension benchmark functions, and 11 types of multidisciplinary engineering design problems. The outcomes of this method have been compared with other existing optimization methods considering convergence speed as well as for searching local and global optimal solutions. The testing results show the better performance of the proposed methods excel than the other existing optimization methods.
A boosted chimp optimizer for numerical and engineering design optimization challenges.
阅读:4
作者:Kumari Ch Leela, Kamboj Vikram Kumar, Bath S K, Tripathi Suman Lata, Khatri Megha, Sehgal Shivani
| 期刊: | Eng Comput | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Mar 24 |
| doi: | 10.1007/s00366-021-01591-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
