Doxycycline (DOXY)-loaded hydroxyapatite (HAp) pectin hydrogel films were prepared for sustained drug release and wound healing application. A series of pectin-based, DOXY-loaded hydrogels were synthesized via a solution casting method. HAp at varying amounts was used as a filler to synthesize PEC/PVA/APTES/HAp (PPC-5, -10, -15, -20) hydrogels. SEM, FTIR, TGA, and XRD analyses verified the porous morphology, structural integrity, thermal stability and amorphous nature of the hydrogels, respectively. A biodegradation study of the hydrogel was conducted using phosphate buffer saline (PBS) and proteinase-K enzymatic solutions. Cell viability was evaluated using the MTT assay with HEK293 cells. Moreover, drug-loaded hydrogel dressings were developed and subjected to in vivo wound healing studies on albino mice. Excision wound infliction was created to produce a 5-6 mm wide and 2-3 mm deep cutaneous wound. Swelling of the hydrogel films was found to be inversely related to the concentrations of HAp. The hydrogels exhibited significant swelling profiles in distilled water with a maximum swelling of 2519% in 140 min, while the highest swelling was observed at pH 6 in both buffer and non-buffer solutions. Antibacterial studies indicated bactericidal activity of hydrogels against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. In vitro release of DOXY from the hydrogel matrix (PPC-10) revealed 88.57% drug release in PBS solution within 3.5 h. Wound healing studies exhibited exceptional healing tendency, with complete excision wound healing achieved in 8 days. In conclusion, the remarkable biocompatible, biodegradable and nontoxic pectin-based hydrogel systems are suitable for drug delivery, tissue engineering, wound healing, and other medico-biological applications.
Hydroxyapatite-reinforced pectin hydrogel films PEC/PVA/APTES/HAp: doxycycline loading for sustained drug release and wound healing applications.
阅读:3
作者:Manzoor Hirra, Arshad Nasima, Ur Rehman Qureshi Muhammad Anees, Javed Aneela
| 期刊: | RSC Advances | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 22; 15(37):30026-30045 |
| doi: | 10.1039/d5ra01989c | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
