Flexible plasmonic devices with electrical tunability are of great interest for diverse applications, such as flexible metamaterials, waveguide transformation optics, and wearable sensors. However, the traditional flexible metal-polymer plasmonic structures suffer from a lack of electrical tunability. Here the first flexible, electrically tunable, and strain-independent plasmons based on graphene-mica heterostructures are experimentally demonstrated. The resonance frequency, strength, quality factor, electrical tunability, and lifetime of graphene plasmons exhibit no visible change at bending radius down to 1 mm and after 1000 bending cycles at a radius of 3 mm. The plasmon-enhanced infrared spectroscopy detection of chemicals is also demonstrated to be unaffected in the flexible graphene-mica heterostructures. The results provide the basis for the design of flexible active nanophotonic devices such as plasmonic waveguides, resonators, sensors, and modulators.
Flexible and Electrically Tunable Plasmons in Graphene-Mica Heterostructures.
阅读:3
作者:Hu Hai, Guo Xiangdong, Hu Debo, Sun Zhipei, Yang Xiaoxia, Dai Qing
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2018 | 起止号: | 2018 Jun 16; 5(8):1800175 |
| doi: | 10.1002/advs.201800175 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
