BACKGROUND: Two-photon microscopy is widely used to study brain function, but conventional microscopes are too slow to capture the timing of neuronal signalling and imaging is restricted to one plane. Recent development of acousto-optic-deflector-based random access functional imaging has improved the temporal resolution, but the utility of these technologies for mapping 3D synaptic activity patterns and their performance at the excitation wavelengths required to image genetically encoded indicators have not been investigated. NEW METHOD: Here, we have used a compact acousto-optic lens (AOL) two-photon microscope to make high speed [Ca(2+)] measurements from spines and dendrites distributed in 3D with different excitation wavelengths (800-920 nm). RESULTS: We show simultaneous monitoring of activity from many synaptic inputs distributed over the 3D arborisation of a neuronal dendrite using both synthetic as well as genetically encoded indicators. We confirm the utility of AOL-based imaging for fast in vivo recordings by measuring, simultaneously, visually evoked responses in 100 neurons distributed over a 150 μm focal depth range. Moreover, we explore ways to improve the measurement of timing of neuronal activation by choosing specific regions within the cell soma. COMPARISON WITH EXISTING METHODS: These results establish that AOL-based 3D random access two-photon microscopy has a wider range of neuroscience applications than previously shown. CONCLUSIONS: Our findings show that the compact AOL microscope design has the speed, spatial resolution, sensitivity and wavelength flexibility to measure 3D patterns of synaptic and neuronal activity on individual trials.
Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope.
阅读:6
作者:Fernández-Alfonso Tomás, Nadella K M Naga Srinivas, Iacaruso M Florencia, Pichler Bruno, RoÅ¡ Hana, Kirkby Paul A, Silver R Angus
| 期刊: | Journal of Neuroscience Methods | 影响因子: | 2.300 |
| 时间: | 2014 | 起止号: | 2014 Jan 30; 222:69-81 |
| doi: | 10.1016/j.jneumeth.2013.10.021 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
