Improved understanding of rice amylose biosynthesis from advanced starch structural characterization.

阅读:5
作者:Li Enpeng, Wu Alex Chi, Li Juan, Liu Qiaoquan, Gilbert Robert G
BACKGROUND: It has been shown from the chain length distributions (CLDs) that amylose chains can be divided into at least two groups: long and short amylose chains. These molecular structures influence some functional properties of starch, such as digestibility and mouth-feel. GBSSI is the key enzyme for the elongation of amylose chains; however, the effect of other starch biosynthesis enzymes in amylose synthesis is still not fully understood. Two advanced starch characterization techniques, size exclusion chromatography (SEC) and fluorophore-assissted carbohydrate electrophoresis (FACE), together with a newly developed starch biosynthesis model, are used to improve understanding of amylose biosynthesis. RESULTS: SEC and FACE were used to determine the CLD of amylose and amylopectin in various native and mutant rice starches. The types of starch branching enzymes (SBEs) involved in the synthesis of the distinct features seen for shorter degrees of polymerization, DP, < 2000, and longer (DP > 2000) amylose chains are identified by combining these data with a mathematical model of amylopectin biosynthesis. The model enables each feature in the amylopectin CLD to be parameterized in terms of relative SBE activities, which are used to explain differences in the genotypes. CONCLUSIONS: The results suggest that while GBSSI is the predominant enzyme controlling the synthesis of longer amylose chains, some branching enzymes (such as BEI and BEIIb) also play important roles in the synthesis of shorter amylose chains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。