Computer vision aims to enable machines to understand the visual world. Computer vision encompasses numerous tasks, namely action recognition, object detection and image classification. Much research has been focused on solving these tasks, but one that remains relatively uncharted is light enhancement (LE). Low-light enhancement (LLE) is crucial as computer vision tasks fail in the absence of sufficient lighting, having to rely on the addition of peripherals such as sensors. This review paper will shed light on this (focusing on video enhancement) subfield of computer vision, along with the other forementioned computer vision tasks. The review analyzes both traditional and deep learning-based enhancers and provides a comparative analysis on recent models in the field. The review also analyzes how popular computer vision tasks are improved and made more robust when coupled with light enhancement algorithms. Results show that deep learners outperform traditional enhancers, with supervised learners obtaining the best results followed by zero-shot learners, while computer vision tasks are improved with light enhancement coupling. The review concludes by highlighting major findings such as that although supervised learners obtain the best results, due to a lack of real-world data and robustness to new data, a shift to zero-shot learners is required.
Low-Light Image and Video Enhancement for More Robust Computer Vision Tasks: A Review.
阅读:5
作者:Tatana Mpilo M, Tsoeu Mohohlo S, Maswanganyi Rito C
| 期刊: | Journal of Imaging | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 21; 11(4):125 |
| doi: | 10.3390/jimaging11040125 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
