The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice

神经胶质细胞反应是小鼠缺氧诱导红细胞生成的重要组成部分

阅读:6
作者:Alexander Weidemann, Yann M Kerdiles, Karl X Knaup, Christopher A Rafie, Adam T Boutin, Christian Stockmann, Norihiko Takeda, Miriam Scadeng, Andy Y Shih, Volker H Haase, M Celeste Simon, David Kleinfeld, Randall S Johnson

Abstract

A key adaptation to environmental hypoxia is an increase in erythropoiesis, driven by the hormone erythropoietin (EPO) through what is traditionally thought to be primarily a renal response. However, both neurons and astrocytes (the largest subpopulation of glial cells in the CNS) also express EPO following ischemic injury, and this response is known to ameliorate damage to the brain. To investigate the role of glial cells as a component of the systemic response to hypoxia, we created astrocyte-specific deletions of the murine genes encoding the hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha and their negative regulator von Hippel-Lindau (VHL) as well as astrocyte-specific deletion of the HIF target gene Vegf. We found that loss of the hypoxic response in astrocytes does not cause anemia in mice but is necessary for approximately 50% of the acute erythropoietic response to hypoxic stress. In accord with this, erythroid progenitor cells and reticulocytes were substantially reduced in number in mice lacking HIF function in astrocytes following hypoxic stress. Thus, we have demonstrated that the glial component of the CNS is an essential component of hypoxia-induced erythropoiesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。