The environmental pollutant cadmium (Cd) poses a threat to human health through the consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered. We hypothesized Cd binding to the inner mitochondrial membrane (IMM) phospholipid cardiolipin (CL) and membrane rigidification underlies defective electron transfer by disrupted respiratory supercomplexes (SCs). In Cd-treated rat kidney cortex (rKC) mitoplasts, laurdan (lipid-water interface), and diphenylhexatriene (hydrophobic core) revealed increased and decreased membrane fluidity, respectively. Laurdan-loaded pure CL or IMM biomimetic (40 mol % POPC, 35 mol % DOPE, 20 mol % TOCL, 5 mol % SAPI) nanoliposomes were rigidified by 25 μM Cd, which was confirmed in live-cell imaging of laurdan or di-4-ANEPPDHQ loaded human proximal convoluted tubule (HPCT) cells. Blue native gel electrophoresis evidenced â¼30% loss of I+III(2)+IV(n) SC formation after 5 μM Cd for 6 h in HPCTs, which was reversed by CL-binding drug MTP-131/SS-31/elamipretide (0.1 μM), yet α-tocopherol-insensitive. Moreover, MTP-131 attenuated Cd-induced H(2)O(2) (â¼30%) and cytochrome c release (â¼25%), but not osmotic swelling, in rKC mitochondria as well as Cd-induced ROS (â¼25%) in HPCTs. MTP-131 binding to IMM biomimetic nanoliposomes decreased zeta potential, prevented Cd-induced liposome size increase, and membrane rigidification reported by laurdan. Heterologous CRLS1 expression reversed Cd (5 μM, 24 h) cytotoxicity (â¼25%) by MTT assay, Cd (5 μM, 3 h)-induced ROS and mitochondrial membrane rigidification by Cd (1 μM, 1 h) in HPCT cells. In summary, we report a novel mechanism for Cd toxicity in which Cd-CL interactions cause IMM rigidification, thereby disrupting correct SC assembly and increasing ROS.
Cadmium-cardiolipin disruption of respirasome assembly and redox balance through mitochondrial membrane rigidification.
阅读:3
作者:Romanova Nadiya, Sule Kevin, Issler Travis, Hebrok Daniel, Persicke Marcus, Thévenod Frank, Prenner Elmar J, Lee Wing-Kee
| 期刊: | Journal of Lipid Research | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;66(3):100750 |
| doi: | 10.1016/j.jlr.2025.100750 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
