Statistical and machine learning approaches predict drug-to-target relationships from 2D small-molecule topology patterns. One might expect 3D information to improve these calculations. Here we apply the logic of the extended connectivity fingerprint (ECFP) to develop a rapid, alignment-invariant 3D representation of molecular conformers, the extended three-dimensional fingerprint (E3FP). By integrating E3FP with the similarity ensemble approach (SEA), we achieve higher precision-recall performance relative to SEA with ECFP on ChEMBL20 and equivalent receiver operating characteristic performance. We identify classes of molecules for which E3FP is a better predictor of similarity in bioactivity than is ECFP. Finally, we report novel drug-to-target binding predictions inaccessible by 2D fingerprints and confirm three of them experimentally with ligand efficiencies from 0.442-0.637 kcal/mol/heavy atom.
A Simple Representation of Three-Dimensional Molecular Structure.
阅读:4
作者:Axen Seth D, Huang Xi-Ping, Cáceres Elena L, Gendelev Leo, Roth Bryan L, Keiser Michael J
| 期刊: | Journal of Medicinal Chemistry | 影响因子: | 6.800 |
| 时间: | 2017 | 起止号: | 2017 Sep 14; 60(17):7393-7409 |
| doi: | 10.1021/acs.jmedchem.7b00696 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
